Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The regioisomeric $1 H(2 H)$-pyra-zolo[3,4-d]pyrimidine N^{1} - and N^{2}-(2'-deoxy- $\boldsymbol{\beta}$-D-ribofuranosides)

Junlin He, ${ }^{\text {a }}$ Frank Seela, ${ }^{\text {a* }}$ Henning Eickmeier ${ }^{\text {b }}$ and Hans Reuter ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany, and
${ }^{\mathbf{b}}$ Anorganische Chemie II, Institut für Chemie, Universität Osnabrück,
Barbarastraße 7, 49069 Osnabrück, Germany
Correspondence e-mail: frank.seela@uni-osnabrueck.de

Received 28 June 2002
Accepted 19 August 2002
Online 21 September 2002

In the title regioisomeric nucleosides, alternatively called 1-(2-deoxy- β-D-erythro-furanosyl)-1 H-pyrazolo[3,4- d]pyrimidine, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$, (II), and 2-(2-deoxy- β-d-erythro-furanosyl)- 2 H -pyrazolo[3,4-d]pyrimidine, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$, (III), the conformations of the glycosylic bonds are anti $\left[-100.4\right.$ (2) ${ }^{\circ}$ for (II) and $15.0(2)^{\circ}$ for (III)]. Both nucleosides adopt an S-type sugar pucker, which is C^{\prime}-endo- C^{\prime}-exo (${ }^{2} T_{3}$) for (II) and 3^{\prime}-exo (between ${ }_{3} E$ and ${ }^{4} T_{3}$) for (III).

Comment

During a search for more stable 'dA-dT' base pairs, various 3 -substituted pyrazolo[3,4- d]pyrimidine 2^{\prime}-deoxyribonucleosides (7 -substituted 8-aza-7-deazapurine 2^{\prime}-deoxyribonucleosides) were studied as analogues of 2^{\prime}-deoxyadenosine and were incorporated in oligonucleotides (systematic numbering is used throughout the paper). The interchange of the fivemembered ring atoms and the presence of substituents $(\mathrm{Br}$ or I) on the 3-position of the modified purine bases exert an influence on the base-pair stability (Seela, Becher \& Zulauf, 1999; He \& Seela, 2002a). Common 2'-deoxyribonucleosides tend to adopt an anti conformation. The orientation of the base relative to the sugar (syn/anti) is defined by the torsion angle $\chi\left(\mathrm{O} 4^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{N} 9-\mathrm{C} 4\right)$ (purine numbering; IUPACIUB Joint Commision on Biochemical Nomenclature, 1983). 2^{\prime}-Deoxyadenosine shows an anti conformation, with a torsion angle $\chi\left(\mathrm{O} 4^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{N} 1-\mathrm{C} 7 \mathrm{a}\right)$ of -165.1° (Sato, 1984), while that of pyrazolo[3,4- d]pyrimidin-4-amine 2^{\prime}-deoxyribonucleoside (8-aza-7-deaza-2'-deoxyadenosine), (I), is between an anti and a high-anti conformation $\left[\chi=-106.3(2)^{\circ}\right.$; Seela, Zulauf et al., 1999]. Further substitution (Br or I) at the 3-position drives the conformation to high-anti [for the 3-bromo derivative, $\chi=-74.1(4)^{\circ}$, while for the 3-iodo derivative, $\chi=-73.2(4)^{\circ}$; Seela et al., 2000]. The steric and
stereo-electronic effects of the nucleobases are thought to be responsible for this change.

(I)

Systematic numbering

(II)

Purine numbering

(III)

To the best of our knowledge, there is no reported crystal structure of a pyrazolo[3,4-d]pyrimidin-2-yl 2^{\prime}-deoxyribonucleoside. Here, the X-ray crystallographic analyses of a pair of N^{1} - and N^{2}-glycosylated pyrazolo[3,4-d]pyrimidines, viz. (II) and (III), respectively, are described. Both nucleosides have the same β-D configuration. According to the systematic numbering for compound (II), the torsion angle χ is defined by $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{N} 1-\mathrm{C} 7$ a. The definition of an anti base orientation about the glycosylic bond of the N^{2}-nucleoside, (III), is arbitrarily ascribed to the torsion angle $\mathrm{O}^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{N} 2-\mathrm{C} 3$ of 180°, according to Seela \& Debelak (2000).

From the crystal structure of compound (II) (Fig. 1), the conformation of the glycosylic bond is between the anti and high-anti values $\left[\chi=-100.4(2)^{\circ}\right]$, and is very close to that of compound (I) (Seela, Zulauf et al., 1999). Compound (III) adopts an anti conformation, with $\chi=15.0$ (2) ${ }^{\circ}$. The glycosylic bond between atoms N 2 and C^{\prime} of compound (III) is $0.034 \AA$ longer than that between atoms N 1 and $\mathrm{C1}^{\prime}$ of compound (II).

Both nucleosides show an S-type sugar conformation, but with different ring puckering. The sugar conformation of nucleoisde (II) is C^{\prime}-endo- C^{\prime}-exo (${ }^{2} T_{3}$), with pseudo-rotation parameters (Rao et al., 1981) $P=185.6(2)^{\circ}$ and $\tau_{m}=$ $40.3(1)^{\circ}$, while the sugar part of nucleoside (III) has a 3^{\prime}-exo conformation (between ${ }_{3} E$ and ${ }^{4} T_{3}$), with pseudo-rotation parameters $P=203.3(1)^{\circ}$ and $\tau_{m}=37.0(1)^{\circ}$. These two nucleosides have the same ap $(g-)$ conformation about the $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$ bond; the values of $\gamma\left(\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 5^{\prime}\right)$ are 177.97 (18) and 175.73 (13) ${ }^{\circ}$ for (II) and (III), respectively. This means that the base and the hydroxymethyl group undergo the same disrotatory motion so that the Coulombic repulsion between atoms N 2 and O^{\prime} or between atoms N 1 and O4' is minimized (Seela, Becher et al., 1999). Similarly, nucleoside (I) adopts the C^{\prime}-endo- C^{\prime}-exo-type (S-type) sugar puckering, but with a -ap conformation around the C4 $4^{\prime}-$ C $^{\prime}$ bond $\left[\gamma=-178.73(16)^{\circ}\right.$; Seela, Zulauf et al., 1999], while 2^{\prime}-deoxyadenosine has a C^{\prime}-endo conformation (Sato, 1984). These results have an influence on the stability of oligonucleotide duplexes (He \& Seela, 2002a).

The base moieties of (II) and (III) are nearly planar. The r.m.s. deviations of the ring atoms (N1/N2/C3/C3a/C4/N5/C6/ N7/C7a) from their calculated least-squares planes are 0.018 and $0.013 \AA$, respectively, with the maximum deviations being 0.028 (2) (N 1) and 0.019 (1) $\AA(\mathrm{C} 3 \mathrm{a})$. Atom C^{\prime} is displaced from this plane by 0.033 (2) and 0.139 (1) \AA in (II) and (III),

(a)

(b)

Figure 1
Perspective views of nucleosides (a) (II) and (b) (III). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary size.
respectively. The bases are strongly stacked in both crystal structures.

Structures (II) and (III), which differ only in the glycosylation positions (N 1 versus N 2), each form two different types of hydrogen bonds. Structure (II) is stabilized by intermolecular hydrogen bonds between $\mathrm{O} 3^{\prime}-\mathrm{H}$ and $\mathrm{O}^{\prime}(2-x$, $y-\frac{1}{2}, \frac{3}{2}-z$) of two sugar moieties and between $\mathrm{O}^{\prime}-\mathrm{OH}$ of the sugar moiety and $\mathrm{N} 7(1+x, y, z)$ of an adjacent nucleobase unit. These interactions link the molecules into an infinite twodimensional network in which the bases are stacked and tilted with respect to each other. In contrast, structure (III) is stabilized exclusively by hydrogen bonds between the bases and sugar units $\left[\mathrm{O}^{\prime}-\mathrm{H}\right.$ with $\mathrm{N} 7\left(1-x, \frac{1}{2}+y, 2-z\right)$ and $\mathrm{O}^{\prime}-\mathrm{H}$ with $\left.\mathrm{N} 5\left(2-x, \frac{1}{2}+y, 1-z\right)\right]$. These interactions link the molecules into an infinite two-dimensional network, with piles of stacked bases tilted only slightly with respect to each other.

Experimental

Nucleoside (II) (Seela \& Steker, 1984) was prepared by the glycosylation reaction of pyrazolo[3,4-d] pyrimidine with 2-deoxy-3,5-di-O-(p-toluoyl)- α-D-erythro-furanosyl chloride (Hoffer, 1960), followed by deprotection of the sugar moiety (He \& Seela, 2002b);
m.p.: $421 \mathrm{~K} ; R_{\mathrm{F}}$ (silica-gel thin-layer chromatography): $0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{CH}_{3} \mathrm{OH}, 9: 1$). Suitable crystals were grown from a solution in methanol. Nucleoside (III) was obtained as the minor product from the above glycosylation reaction followed by deprotection of the sugar moiety; m.p.: $427 \mathrm{~K} ; R_{\mathrm{F}}$ (silica-gel thin-layer chromatography): $0.13\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}, 9: 1\right)$. Suitable crystals were grown from a solution in acetone.

Compound (II)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$
$M_{r}=236.24$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.9306$ (8) \AA
$b=11.1084$ (15) \AA
$c=13.7591$ (11) \AA
$V=1059.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.481 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker $P 4$ diffractometer
$2 \theta / \omega$ scans
2375 measured reflections
1784 independent reflections
1474 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=30.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
1784 reflections
164 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 40 reflections
$\theta=6.9-12.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Transparent needle, colourless $0.58 \times 0.28 \times 0.28 \mathrm{~mm}$

$$
\begin{aligned}
& h=-1 \rightarrow 9 \\
& k=-15 \rightarrow 1 \\
& l=-19 \rightarrow 1 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{N} 1-\mathrm{Cl}^{\prime}$	1.448 (2)		
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{Cl}^{\prime}$	128.04 (18)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cl}^{\prime}$	120.69 (17)
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	-0.8 (3)	$\mathrm{C1}^{\prime}-\mathrm{C2}^{\prime}-\mathrm{C3}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	76.1 (2)
$\mathrm{C} 1^{\prime}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	-175.5 (2)	$\mathrm{C} 1^{\prime}-\mathrm{C2}^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	-39.3 (2)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{N} 7$	-1.4 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{O} 4^{\prime}$	35.0 (2)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{N} 7$	179.51 (19)	$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	157.48 (17)
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	-100.4 (2)	$\mathrm{N} 1-\mathrm{C1}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C} 4^{\prime}$	-133.65 (17)
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	73.3 (2)	$\mathrm{C}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}$	105.76 (19)
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}$	139.9 (2)	$\mathrm{C} 3^{\prime}-\mathrm{C4}^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}$	-16.6 (2)
$\mathrm{O} 4^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	30.5 (2)	$\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{O}^{\prime}$	60.9 (2)
$\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C3}^{\prime}$	152.21 (19)	$\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C5}^{\prime}-\mathrm{O5}^{\prime}$	177.97 (18)

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{\prime}-\mathrm{H} 3^{\prime} \mathrm{O} \cdots 4^{\prime \mathrm{i}}$	$0.80(2)$	$2.16(2)$	$2.871(2)$	$149(3)$
$\mathrm{O}^{\prime}-\mathrm{H} 5^{\prime} \mathrm{O} \cdots \mathrm{N} 7^{\mathrm{ii}}$	$0.80(2)$	$2.04(2)$	$2.828(3)$	$168(3)$

[^0]Table 3
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (III).

$\mathrm{N} 2-\mathrm{Cl}^{\prime}$	1.4817 (18)		
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{N} 2$	102.79 (12)	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}^{\prime}$	116.08 (12)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cl}^{\prime}$	128.25 (13)		
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	0.14 (17)	$\mathrm{C1}^{\prime}-\mathrm{C2}^{\prime}-\mathrm{C3}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	84.82 (15)
$\mathrm{C} 7 \mathrm{a}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1^{\prime}$	-175.41 (12)	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	-33.24 (15)
C3-C3a-C7a-N7	-179.60 (14)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O} 4^{\prime}$	36.04 (14)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	15.0 (2)	$\mathrm{O} 3^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	159.99 (12)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	-170.15 (12)	$\mathrm{C} 2^{\prime}-\mathrm{C1}^{\prime}-\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}$	3.33 (14)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	70.59 (16)	$\mathrm{O} 4^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{O}^{\prime}$	58.82 (17)
$\mathrm{O} 4^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	19.55 (15)	$\mathrm{C} 3^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{O}^{\prime}$	175.73 (13)
$\mathrm{N} 2-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C3}^{\prime}$	139.15 (12)		

Compound (III)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$
$M_{r}=236.24$
Monoclinic, $P 2_{1}$
$a=4.9396$ (7) \AA
$b=13.1528$ (14) \AA
$c=8.1780$ (12) A
$\beta=102.772(9)^{\circ}$
$V=518.17(12) \AA^{3}$
$Z=2$
$D_{x}=1.514 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 47
\quad reflections
$\theta=4.5-16.1^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Transparent block, yellow
$0.57 \times 0.57 \times 0.48 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer
$2 \theta / \omega$ scans
2202 measured reflections
1562 independent reflections
1524 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=30.0^{\circ}$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0637 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$	$\quad+0.0228 P]$
$w R\left(F^{2}\right)=0.092$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.07$	$(\Delta / \sigma)_{\max }<0.001$
1562 reflections	$\Delta \rho_{\max }=0.28$ e \AA^{-3}
164 parameters	$\Delta \rho_{\min }=-0.20 \mathrm{e} \AA^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXTL
\quadindependent and constrained Extinction coefficient: $0.026(9)$	

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} \mathrm{O} \cdots \mathrm{N} 7^{\mathrm{i}}$	$0.842(15)$	$1.992(15)$	$2.832(2)$	$175(2)$
O5' $^{\prime}-\mathrm{H}^{\prime} \mathrm{O} \cdots \mathrm{N} 5^{\mathrm{ii}}$	$0.842(15)$	$1.972(15)$	$2.8011(19)$	$168.0(17)$

Symmetry codes: (i) $1-x, \frac{1}{2}+y, 2-z$; (ii) $2-x, \frac{1}{2}+y, 1-z$.

In the absence of suitable anomalous scattering, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack (1983) parameter led to inconclusive values (Flack \& Bernadinelli, 2000) [-0.2 (16) for (II) and 0.4 (10) for (III)]. Therefore, the Friedel equivalents [416 for (II) and 119 for (III)] were merged before the final refinements. The known configuration of the parent molecule was used to define the enantiomer employed in the refined model. All H atoms were initially found in a difference Fourier synthesis. In order to maximize the data-to-parameter ratio, the H atoms bonded to C atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and constrained to ride on their parent atoms. The hydroxy H atoms were initially placed in differ-ence-map positions, then geometrically idealized and constrained to ride on their parent O atoms, although the chemically equivalent $\mathrm{O}-$ H bond lengths were allowed to refine while being constrained to be equal. An overall isotropic displacement parameter was refined for all H atoms.

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1143). Services for accessing these data are described at the back of the journal.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernadinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
He, J. \& Seela, F. (2002a). Tetrahedron, 58, 4535-4542.
He, J. \& Seela, F. (2002b). In preparation.
Hoffer, M. (1960). Chem. Ber. 93, 2777-2781.
IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983). Eur. J. Biochem. 131, 9-15.
Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421425.

Sato, T. (1984). Acta Cryst. C40, 880-882.
Seela, F., Becher, G., Rosemeyer, H., Reuter, H., Kastner, G. \& Mikhailopulo, I. A. (1999). Helv. Chim. Acta, 82, 105-124.

Seela, F., Becher, G. \& Zulauf, M. (1999). Nucleosides Nucleotides, 18, 13991400.

Seela, F. \& Debelak, H. (2000). Nucleic Acids Res. 28, 3224-3232.
Seela, F. \& Steker, H. (1984). Liebigs Ann. Chem. pp. 1719-1730.
Seela, F., Zulauf, M., Reuter, H. \& Kastner, G. (1999). Acta Cryst. C55, 19471950.

Seela, F., Zulauf, M., Reuter, H. \& Kastner, G. (2000). Acta Cryst. C56, 489491.

Sheldrick, G. M. (1997). SHELXTL. Release 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Release 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $1+x, y, z$.

